Fonte: Ricardo Ruiz Sulzer - FACEBOOK
Vamos pensar juntos!
Devemos fatorar o 4 e o 27.
Agora podemos escrever a igualdade onde as bases são iguais e os expoentes são representados por incógnitas (x e y). Nas duas equações teremos os membros (primeiro e segundo) com bases iguais.
Agora podemos representar a primeira equação x = 2.(y + 1), portanto x = 2y + 2 e a segunda equação 3y = x - 9.
Vamos montar um sistema linear!
Podemos substituir x na segunda equação, 3y = x - 9, temos então: 3y = 2y + 2 - 9, portanto temos: 3y - 2y = 2 - 9. O valor de y é - 7.
Substituir y na primeira equação, x = 2y + 2, temos então: x = 2.(-7) + 2. O valor de x é - 12.
Portanto y - x vale:
- 7 - (-12) =
-7 + 12 =
5
Parabéns!
Nenhum comentário:
Postar um comentário